
J. Fluid Mech. (1997), vol. 341, pp. 385–413. Printed in the United Kingdom

c© 1997 Cambridge University Press

385

Effects of a semipervious lens on soil vapour
extraction

By C H I U-O N N G AND C H I A N G C. M E I
Department of Civil and Environmental Engineering, Massachusetts Institute of Technology,

Cambridge, MA 02139, USA

(Received 8 September 1996 and in revised form 20 February 1997)

We describe a theory for the removal of volatile organic chemicals from an unsaturated
soil stratum consisting of highly porous coarse sand layers sandwiching a thin and
semipervious lens. Each soil layer is modelled as a periodic array of spherical
aggregates formed by solid grains and immobile water trapped by surface tension.
Volatile chemicals are vaporized in the mobile air in pores between aggregates,
dissolved in the intra-aggregate water, and adsorbed on the surface of soil grains.
Using the effective transport equations derived for the aggregated soils, we consider
shallow layers with sharp contrast in physical properties. An asymptotic analysis is
developed for an axisymmetric geometry, yielding quasi-one-dimensional governing
equations for individual layers. At the leading order the flow and the vapour transport
are horizontal in the coarse layers but vertical in the semipervious lens. Numerical
results are presented for a simple example to demonstrate the significance of the
lens permeability, diffusivity and retardation factor, and the aggregate diffusivity in
the coarse layers, on the vapour transport during the stages of contamination and
air-venting.

1. Introduction
Non-aqueous-phase liquids leaked in an unsaturated or vadose zone often become

a persistent source of contaminant vapour and groundwater contamination. The
vapour of volatile organic compounds (VOC) can spread to large areas owing to the
high mobility of the gaseous phase in pore space (Schwille 1988). Cleaning up the
contaminated soil is difficult because the vapour is capable of partitioning into the
soil moisture and the solid organic matter.

Removal of VOC vapour in the unsaturated zone is usually achieved by pumping
the vapour-laden air in the pores into suction wells placed in the contaminated vadose
zone. The process is usually called soil vapour extraction (SVE). As the vapour is
removed, the aqueous and the sorbed phases will also be depleted, driven by phase
change kinetics. Very often, unsaturated zones are stratified: layers of semipervious
soil, such as clay lenses, are embedded in a medium of more porous or sandy
materials. Obviously if SVE is applied in such a heterogeneous system, the progress
of the remediation is likely to be limited by the slow removal rate of contaminant
in the low-permeability layers. To provide guidance for designing SVE in a layered
soil, it is necessary to develop an effective vapour transport model which takes into
account the difference in flow and transport capacity of individual layers.

Most existing models for the vapour transport in an unsaturated zone are focused
on homogeneous soils. In earlier works (e.g. Abriola & Pinder 1985; Corapcioglu
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& Baehr 1987; Kaluarachchi & Parker 1990), the emphasis is to develop multiphase
transport models for groundwater contamination which consider only diffusive vapour
transport. The effects of density-driven advection of dense vapour were later studied
by Sleep & Sykes (1989), Falta et al . (1989) and Mendoza & Frind (1990). SVE is
distinguished by the fact that vapour advection is forced by pumping. Typical works
in this category include Wilson, Clarke & Clarke (1988), Baehr, Hoag & Marley
(1989), Johnson, Kemblowski & Colthart (1990a), Rathfelder, Yeh & Mackay (1991)
and Falta, Pruess & Chesnut (1993). These models ignore the kinetics of inter-phase
mass transfer and assume that all phase partitionings are always in local equilibrium.
Evidence of transfer kinetics has nevertheless been found in some experimental
observations. This motivated the kinetic models by Sleep & Sykes (1989), Brusseau
(1991) and Armstrong, Frind & McClellan (1994) who adopt first-order relations to
describe the inter-phase mass transfer rates on the macro-scale. The first-order rate
constants are essentially empirical: in most cases definite data are not available and
are difficult to estimate. A more theoretically satisfactory alternative is the spherical
aggregate diffusion model (e.g. Brusseau & Rao 1990; Gierke, Hutzler & McKenzie
1992) for which the governing equations can be justified rigorously (Ng & Mei 1996a).
With constitutive coefficients known from reliable experimental data, this model has
been confirmed by one-dimensional experiments in a packed soil column (Ng & Mei
1996b).

Studies on the effects of soil heterogeneity on SVE have been rather limited.
Johnson et al . (1990a,b) presented one-dimensional mass-transfer-limited models for
steady vapour transport on top of a layer of liquid VOC or a layer of low-permeability
soil with residual liquid hydrocarbon. Experimental and theoretical investigations of
a similar problem were carried out by Ho & Udell (1991, 1992), who provide visual
evidence of the geometrical evolution of a liquid VOC pool in a low-permeability
layer as a result of overhead air blowing. Contrasting features of air flow and vapour
transport in different layers are however not studied in these works.

The objective of the present study is to examine theoretically the effects of soil
stratification on the flow of pore air and the transport of volatile chemicals in an
SVE operation. Letting each layer be formed by spherical aggregates, we shall derive
approximate equations that capture the essential physics for a shallow coarse soil
stratum with a thin fine-grained lens of very low permeability. The coarse- and
fine-grained layers are assumed to have sharply contrasting air conductivities and
vapour diffusivities. While the contaminant source is confined to a small region in the
coarse layer above the lens, the vapour is allowed to spread laterally before pumping
to great distances. We assume that density-driven advection is not important. This is
true for compounds like toluene and xylene which have a relatively small molecular
weight and a low vapour pressure at soil temperatures (Falta et al . 1989).

In §2, we shall give the basic equations and boundary conditions. Scales of various
physical parameters are estimated in §3. Based on the small ratio of characteristic
length scales which is also related to the permeability ratio, a perturbation analysis
is carried out in §4 and yields the leading-order governing equations and boundary
conditions. The asymptotic procedure resembles that used previously in deriving
the seepage equation for finite strain consolidation in an aquifer–aquitard–aquifer
system (Fallou, Mei & Lee 1992; Lee, Fallou & Mei 1992; Ng & Mei 1995). It
will be seen that the sharp contrast of material properties helps to simplify the
spatial dependence in both flow and transport problems. Numerical solutions of the
asymptotic equations are discussed in §5. Attention will be focused on the effects of
the soil properties (conductivity, diffusivity and retardation factor), aggregate diffusion
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Figure 1. Definition sketch of problem geometry.

rate and pumping strength on the vapour distribution as a function of space and
time.

2. Problem formulation
As shown in figure 1, the unsaturated zone consists of a confined and horizontal

stratum of coarse and highly permeable soil sandwiching a thin lens of much finer
and semipervious soil. To study the physics without excessive computation, axial
symmetry about the centre of the lens is assumed. With its top and bottom surfaces
being well-sealed, the unsaturated zone is assumed to extend radially to infinity.
Practically a sealed ground surface is desirable for SVE in order to control the air
flow to pass through the contaminated soils (e.g. Johnson et al . 1990b). The case with
an underlying saturated zone is not treated in this study. The moisture content in the
unsaturated zone is assumed to be at the irreducible level so that in the absence of
surface recharge the pore water is not draining. A cylindrical coordinate system (r, z)
is defined as shown in figure 1.

We denote the semipervious lens by Ωf (where the subscript f stands for fine
grains), its lower surface by Γ1: z = F1(r), its upper surface by Γ2: z = F2(r), and
its maximum radius by r = rb. For convenience of identification the coarse zone is
divided into three layers: the inner layers below (Ω1) and above (Ω2) the lens, and
the outer layer Ω3. The thicknesses d1, d2 and df of Ω1, Ω2 and Ωf respectively
are functions of r, while the total thickness d3 of the soil stratum is assumed to be
constant. We also assume that within each layer the soil is isotropic, though not
necessarily homogeneous.

We suppose that initially (t < 0) the soil is clean. At the instant t = 0 a VOC-
contaminated soil column is introduced at the centre and fully penetrates the upper
layer Ω2. The vapour concentration in the soil column is maintained at a constant level
for the duration 0 < t < T , while vapour diffuses continuously into the surrounding
soil. At t = T > 0, the contaminated soil column is replaced by a vacuum well, in
which the pressure is lowered in order to withdraw air from the surrounding soil.
Variations of VOC vapour concentration as a function of time and space are to be
sought.

On the pore scale, each soil layer is assumed to be packed by uniform spherical
aggregates inside which water is held immobilized by capillary forces. Air containing
the vapour phase of a chemical fills and moves in the pore space between the
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aggregates. The same chemical is also dissolved in the intra-aggregate water, and
adsorbed on the particles constituting the aggregates. We further assume equilibrium
chemical partitioning between aqueous and sorbed phases inside an aggregate, and
also between vapour and aqueous phases on the air/aggregate interface. Note
that these are local assumptions on the aggregate scale and differ from the usual
assumption of local equilibrium on the macro-scale.

2.1. Governing equations

For demonstrating our basic ideas, it suffices to consider the case of axial symmetry.
We begin with the exact equations for the air flow and the vapour transport applicable
to all layers. Because the externally applied pressure change can be significant, air
can be compressible and must satisfy the continuity equation:

θg
∂ρ

∂t
+

1

r

∂

∂r
(rρu) +

∂

∂z
(ρw) = 0 (2.1)

where t is the time, (u, w) are the radial and the vertical components of the specific
discharge (i.e. flow per unit area of soil matrix), ρ is the air density, and θg is the
macro-porosity (i.e. the volume fraction of air-filled pore space) of the medium. The
specific discharge is related to the pressure gradient according to Darcy’s law:

(u, w) = −k
(
∂p

∂r
,
∂p

∂z

)
(2.2)

where p is the absolute air pressure, and k is the air conductivity of the medium divided
by the air specific weight. The gravity effect is ignored in (2.2). This is justifiable
during pumping since the applied pressure gradient will dominate. Before pumping,
the buoyancy effect is also negligible compared to diffusion when the chemical has
a relatively small molecular weight and its vapour pressure is much lower than the
atmospheric pressure (Falta et al . 1989).

Modelling air as an ideal gas, the equation of state reads

pM

RgΘ
= ρ (2.3)

where M is the molecular weight of the air mixture, Rg is the universal gas constant,
and Θ is the absolute air temperature. We assume that both Θ and M are constants
so that p is linearly proportional to ρ. Note that we shall not distinguish the air
pressure from the total gas pressure, since the partial pressure due to VOC vapour is
assumed to be relatively small. Limiting to these conditions, a nonlinear equation for
p follows by inserting (2.2) into (2.1):

θg
∂p

∂t
− 1

r

∂

∂r

(
rkp

∂p

∂r

)
− ∂

∂z

(
kp
∂p

∂z

)
= 0. (2.4)

Note that the above flow equation is independent of chemical vapour transport and
can be solved in advance.

We adopt the so-called aggregate-diffusion model where the soil in each layer is
composed of a regular array of spherical aggregates of equal radius a. The aqueous
diffusivity inside an aggregate (Dw) is assumed to be very small compared to the
vapour diffusivity in the pore air (D) (e.g. see Brusseau & Rao 1990; Ng & Mei
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1996a,b; and references cited therein). The equation for the vapour transport is

θg
∂cg

∂t
+

1

r

∂

∂r
(rucg) +

∂

∂z
(wcg)−

1

r

∂

∂r

(
rD
∂cg

∂r

)
− ∂

∂z

(
D
∂cg

∂z

)
= −6φDwθa

a2H

∞∑
n=1

∫ t

0

e−λn(t−τ)
∂cg

∂τ
dτ, (2.5)

where the time integral on the right-hand side represents the mass transfer rate
from aggregates into pore air per bulk soil volume. In this equation, the vapour
concentration cg(r, z, t) is defined as the mass of chemical vapour per phase volume,
φ is the intra-aggregate porosity, θa = 1 − θg is the volume fraction of aggregates,
and H is Henry’s law constant. Also,

λn = n2π2De/a
2 (n = 1, 2, · · ·), (2.6)

where

De =
φDw

Kd(1− φ)ρs + φ
(2.7)

is the sorption-retarded effective diffusivity in an aggregate, in which Kd is the sorption
partition coefficient, and ρs is the aggregate solid density. The aqueous concentration
in aggregates, cw , is in general not in equilibrium with the vapour concentration, and
its mean value over an aggregate volume can be found from

c̄w =
1

H

[
cg −

6De
a2

∞∑
n=1

∫ t

0

e−λn(t−τ)

λn

∂cg

∂τ
dτ

]
. (2.8)

Equations (2.5) and (2.8) hold for each layer, coarse or fine, and have been derived
rigorously by the theory of homogenization (Ng & Mei 1996a).

2.2. Boundary conditions

Referring to figure 1, let us distinguish by the subscripts i = 1, 2 quantities for the
two coarse layers below and above the lens respectively, and by i = 3 the coarse layer
outside the vertical cylinder containing the lens. The subscript f is used to distinguish
the fine-grained semipervious lens. First, at the centre of the bottom coarse layer Ω1,
the pressure and the concentration gradients are zero by axial symmetry:

∂p1

∂r
= 0,

∂cg1

∂r
= 0 at r = 0, 0 < z < F1(r), 0 < t. (2.9)

At the outer radius of the centre column of radius r0, i.e. the well screen, in the
upper coarse layer Ω2, the boundary condition depends on the stage of operation.
During the state of contamination, 0 < t < T , there is no flow but a constant vapour
concentration cg0 at r = r0:

∂p2

∂r
= 0, cg2 = cg0 at r = r0, F2(r) < z < d3, 0 < t < T . (2.10)

During pumping, t > T , the pressure is equal to that in the well, p0, which is below
the atmospheric pressure Pa. The concentration in the well is uniform so that there is
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no concentration gradient. Thus

p2 = p0,
∂cg2

∂r
= 0 at r = r0, F2(r) < z < d3, T < t. (2.11)

On the cylindrical interface between the outer coarse zone Ω3 and the two inner
coarse zones Ω1 and Ω2, we require the continuity of pressure, concentration, and
fluxes of air and vapour:

p3 = p1, cg3 = cg1,
∂p3

∂r
=
∂p1

∂r
,

∂cg3

∂r
=
∂cg1

∂r
at r = rb, 0 < z < F1(r),

(2.12)

p3 = p2, cg3 = cg2,
∂p3

∂r
=
∂p2

∂r
,

∂cg3

∂r
=
∂cg2

∂r
at r = rb, F2(r) < z < d3.

(2.13)

Let the bottom of Ω1 and Ω3 and the top of Ω2 and Ω3 be impermeable; the normal
fluxes are then zero there:

∂p

∂z
= 0,

∂cg

∂z
= 0 at z = 0 and z = d3, 0 < r < ∞. (2.14)

Along the lens boundaries Γ1, i.e. z = F1(r), r < rb and Γ2, i.e. z = F2(r), r < rb, we
also require the continuity of pressure, concentration, and normal fluxes of air and
vapour:

pi = pf, cgi = cgf on Γi (i = 1, 2), (2.15)

ki
∂pi

∂r
nr + ki

∂pi

∂z
nz = kf

∂pf

∂r
nr + kf

∂pf

∂z
nz on Γi (i = 1, 2), (2.16)(

uicgi −Di
∂cgi

∂r

)
nr +

(
wicgi − Di

∂cgi

∂z

)
nz

=

(
ufcgf − Df

∂cgf

∂r

)
nr +

(
wfcgf − Df

∂cgf

∂z

)
nz on Γi (i = 1, 2), (2.17)

where (nr, nz) are the radial and the vertical components of the normal vector to the
lens surface Γi : z = Fi given by

(nr, nz) =
(
−∂Fi/∂r, 1

)
. (2.18)

Finally, at a large radial distance from the centre, the pressure is equal to the
atmospheric pressure Pa and the vapour concentration is zero:

p3 = Pa, cg3 = 0 at r →∞, 0 < z < d3. (2.19)

For heterogeneous soils the three-dimensional equations and boundary conditions
of this section are however unwieldy for computations and unrevealing for physical
understanding. We shall therefore seek approximations for situations emulating some
aspects of reality.

3. Estimates of scales
To provide a basis for perturbation analysis we first estimate the scales of important

physical variables, and the relationship between some dimensionless ratios. All scales
will be distinguished by tildes, i.e. the scale of f is f̃. For convenience, we summarize
in table 1 the scales discussed below which will be used for normalization in later
sections.
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3.1. Geometrical shallowness

The radial length scale r̃, characterized by the maximum radius of the semipervious
lens, is assumed to be much larger than the vertical length scale d̃, typical of a layer
depth. We define the square of their ratio as the small ordering parameter:

δ ≡ (d̃/r̃)2 � 1. (3.1)

3.2. Radius of influence and conductivity contrast

Let r̃p be the radius of influence, which is the radial length scale over which the
pressure change in response to air pumping is significant. By balancing the radial
flux through the pumping coarse layer and the vertical flux through the semipervious
layer, it can be shown that the radius of influence is related to the permeability ratio
(Lee et al . 1992):

d̃/r̃p = (k̃f/k̃c)
1/2 (3.2)

where k̃f and k̃c are respectively the scales of the air conductivity of the semipervious
lens and the coarse zone. The conductivity of air in soil is known to vary over a wide
range of values. Typically for coarse materials k̃c = O(10−7–10−9) m2 (Pa s)−1 and
for fine materials k̃f = O(10−11–10−13) m2 (Pa s)−1. Thus the ratio k̃f/k̃c varies over a
broad range of small values 10−6–10−2. However, we shall for generality assume that
the conductivity ratio is such that the radius of influence is comparable to the radial
geometrical length scale:

r̃p = O(r̃). (3.3)

It then follows from (3.1) and (3.2) that

δk ≡ k̃f/k̃c = O(δ). (3.4)

3.3. Contrast of effective diffusivities in pore air

The effective diffusivity in pore air (D) varies with the air saturation and the total
porosity of the medium according to the Millington formula (Millington 1959):

D/Dpure = (air saturation)10/3(total porosity)4/3 (3.5)

where Dpure is the diffusivity in pure air. Typically both air saturation and total
porosity are larger in the coarse medium than the fine medium, and therefore D may
differ appreciably in different media. For example, consider an air saturation of 0.8
and a total porosity of 0.5 for a coarse medium, and an air saturation of 0.2 and a
total porosity of 0.2 for a fine medium. Then the above ratio is 0.19 for the coarse
medium, but has a much smaller value of 5.5 × 10−4 for the fine medium. In this
study we assume that the material contrast is sufficiently large such that

δD ≡ D̃f/D̃c = O(δ), (3.6)

where D̃f and D̃c are respectively the scales of the effective vapour diffusivity in the
semipervious lens and in the coarse layers.

3.4. Air specific discharge

Owing to the large conductivity contrast, the air specific discharge will have different
scales in the two zones, and in different directions. Let (ũc, w̃c) and (ũf , w̃f) be
respectively the scales of the specific discharge in the coarse layers and in the
semipervious lens. From Darcy’s law, we may estimate that the two radial components
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are given by

ũc = −O(k̃c∆p̃/r̃p), (3.7)

ũf = −O(k̃f∆p̃/r̃p) = O(δũc), (3.8)

where ∆p̃ = Pa − p0 is the scale of the pressure drop in the well. While the radial
specific discharges of air in the two zones differ by an order of δ, the vertical
ones are comparable to each other by virtue of continuity. It is well-known that
in a horizontally layered system with a sharp contrast in k the effective vertical
conductivity of the composite is dominated by the conductivity of the less pervious
layer. Therefore

w̃c = w̃f = −O(k̃f∆p̃/d̃) = O(δ1/2ũc) (3.9)

where the last equality is obtained by (3.1), (3.3) and (3.4). On combination of (3.8)
and (3.9) it is clear that the flow is predominantly horizontal in a coarse layer, but
almost vertical in the lens. For normalization purposes, the radial velocity scale is
taken to be a positive number defined by

ũc = k̃c(Pa − p0)/r̃, (3.10)

which varies with the well pressure p0. We also use the pressure drop in the well
Pa − p0 as the scale of pressure deviation from the atmospheric pressure.

A dimensionless parameter characterizing the flow rate is the Péclet number in the
coarse layers, defined by

Pe ≡ ũcr̃/D̃c = k̃c(Pa − p0)/D̃c, (3.11)

where the second equality is obtained using (3.10). Assuming Pa−p0 is a finite fraction
of Pa = O(105 Pa), and using D̃c = O(0.1 cm2 s−1) and k̃c = O(10−7–10−9 m2 (Pa s)−1),
we estimate that Pe = O(10–103). Though the Péclet number can be large, it is
desirable for generality to obtain a transport equation in which the diffusion is as
important as the advection. Therefore we assume that

Pe > O(1). (3.12)

3.5. Time scale

The advection time over a global distance along a coarse layer is given by t̃ = r̃/ũc
which, by virtue of the above assumptions, is also comparable to

(i) the advection time scale across a coarse layer or the lens:

t̃ = (r̃/d̃)(w̃c/ũc)(d̃/w̃c) = O(d̃/w̃c) = O(d̃/w̃f); (3.13)

(ii) the diffusion time scale across the lens:

t̃ = (r̃/d̃)2(D̃c/ũcr̃)(D̃f/D̃c)(d̃
2/D̃f) = O(d̃2/D̃f); (3.14)

and
(iii) the diffusion time over a global distance along a coarse layer:

t̃ = (D̃c/ũcr̃)(r̃
2/D̃c) = O(r̃2/D̃c). (3.15)

In addition, we assume for generality that t̃ is also comparable to the diffusion time
across an aggregate in the coarse layers:

t̃ = O(a2
c/Dwc) (3.16)
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Variable or parameter Normalization scale
r, r0, rb r̃

z, di, df , Fj d̃ = δ1/2r̃

ki k̃c
kf k̃f = δkk̃c
Di D̃c
Df D̃f = δDD̃c
ui ũc = k̃c(Pa − p0)/r̃
uf δũc
wi, wf δ1/2ũc
t, T t̃ = r̃/(ũcP̂a)
cgi, cgf cg0

cw cg0/H
p′i, p

′
f Pa − p0

Table 1. Normalization scales (i = 1, 2, 3, j = 1, 2)

where ac denotes the aggregate radius and Dwc is the aqueous diffusivity in an
aggregate, both for the coarse layers. In summary only one distinct time scale t̃ will
be pertinent in the present problem.

To facilitate discussions on the evolution of the vapour plume prior to pumping, it
is however desirable to use a time scale which is independent of the pumping pressure.
Therefore we redefine the time scale as

t̃ = r̃/(ũcP̂a) = r̃2/(k̃cPa) (3.17)

where Pa is the atmospheric pressure, and

P̂a = Pa/(Pa − p0) = 1/(1− p0/Pa) (3.18)

is the dimensionless parameter characterizing the well pressure, which is assumed to
be of order unity. Note that the time scale for the flow to approach steady state is
also given by (3.17), which as shown in (3.13)–(3.15) is comparable to the transport
time scales. Therefore in the present transport problem the flow must be considered
as transient. This is different from the case of open ground surface in which steady
air flow can be established in a much shorter time scale than the transport processes
(Ng & Mei 1996a).

4. Perturbation equations
We shall now deduce asymptotic expansions of the flow and the transport equations.

The generic expansion of an unknown variable f is expanded in a power series of δ
as follows:

f = f(0) + δf(1) + δ2f(2) + · · · . (4.1)

All normalized quantities will be distinguished by hats.

4.1. Air flow

Since the pressure drop in the well Pa − p0 governs the pressure change in the soil
layers, let us introduce the pressure deviation p′ by

p′(r, z, t) ≡ Pa − p(r, z, t), (4.2)
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and define the normalized pressure deviation by

p̂′(r̂, ẑ, t̂) = p′(r, z, t)/(Pa − p0). (4.3)

After changing the variable, we normalize the flow equation (2.4) and the interface
condition (2.16) according to the scales in table 1:

δθgiP̂a
∂p̂′i

∂t̂
− δ

r̂

∂

∂r̂

[
r̂k̂i(P̂a − p̂′i)

∂p̂′i
∂r̂

]
− ∂

∂ẑ

[
k̂i(P̂a − p̂′i)

∂p̂′i
∂ẑ

]
= 0 in Ωi (i = 1, 2, 3),

(4.4)

δθgfP̂a
∂p̂′f

∂t̂
− δδk

r̂

∂

∂r̂

[
r̂k̂f(P̂a − p̂′f)

∂p̂′f

∂r̂

]
− δk

∂

∂ẑ

[
k̂f(P̂a − p̂′f)

∂p̂′f

∂ẑ

]
= 0 in Ωf, (4.5)

− δk̂i
∂p̂′i
∂r̂

∂F̂i

∂r̂
+ k̂i

∂p̂′i
∂ẑ

= −δδkk̂f
∂p̂′f

∂r̂

∂F̂ i

∂r̂
+ δkk̂f

∂p̂′f

∂ẑ
on Γi (i = 1, 2). (4.6)

Recall that δk = O(δ). We obtain perturbation equations by expanding the pressure
deviations p̂′i and p̂′f according to (4.1).

In the coarse zone Ωi (i = 1, 2, 3), the first two orders of the flow equation follow
from (4.4):

− ∂

∂ẑ

[
k̂i(P̂a − p̂′(0)

i )
∂p̂
′(0)
i

∂ẑ

]
= 0, (4.7)

and

θgiP̂a
∂p̂
′(0)
i

∂t̂
− 1

r̂

∂

∂r̂

[
r̂k̂i(P̂a − p̂′(0)

i )
∂p̂
′(0)
i

∂r̂

]

− ∂

∂ẑ

[
k̂i(P̂a − p̂′(0)

i )
∂p̂
′(1)
i

∂ẑ

]
+

∂

∂ẑ

[
k̂ip̂
′(1)
i

∂p̂
′(0)
i

∂ẑ

]
= 0. (4.8)

For the boundary conditions along the lens surfaces Γi (i = 1, 2), pressure continuity
from (2.15) gives

p̂
′(0)
i = p̂

′(0)
f on Γi (i = 1, 2), (4.9)

while flux continuity from (4.6) gives at the first two orders

k̂i
∂p̂
′(0)
i

∂ẑ
= 0 on Γi (i = 1, 2), (4.10)

− k̂i
∂p̂
′(0)
i

∂r̂

∂F̂i

∂r̂
+ k̂i

∂p̂
′(1)
i

∂ẑ
= k̂f

(
δk

δ

)
∂p̂
′(0)
f

∂ẑ
on Γi (i = 1, 2). (4.11)

Also, the zero flux conditions on the bottom and the top boundaries of the coarse
zone give

∂p̂
′(0)
i

∂ẑ
=
∂p̂
′(1)
i

∂ẑ
= 0 (i = 1, 2, 3) on ẑ = 0 and ẑ = d̂3. (4.12)

From (4.7) and the boundary conditions (4.10) and (4.12), it is clear that the
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leading-order pressure in the coarse zone is uniform in ẑ within a layer. Hence,

p̂
′(0)
i = p̂

′(0)
i (r̂, t̂) (i = 1, 2, 3). (4.13)

By this result the last term on the left-hand side of (4.8) vanishes. We next integrate
(4.8) with respect to ẑ across a particular layer and use Leibniz’s rule, the boundary
condition (4.12) and the interface conditions (4.9) and (4.11). Specifically, in the
bottom coarse layer Ω1, the integration is from 0 to F̂1(r̂):

d̂1〈θg1〉P̂a
∂p̂
′(0)
1

∂t̂
− 1

r̂

∂

∂r̂

[
r̂d̂1〈k̂1〉(P̂a − p̂′(0)

1 )
∂p̂
′(0)
1

∂r̂

]
=

(
δk

δ

)[
k̂f(P̂a − p̂′(0)

f )
∂p̂
′(0)
f

∂ẑ

]
ẑ=F̂1

.

(4.14)

In the upper coarse layer Ω2, the integration is from F̂2(r̂) to d̂3,

d̂2〈θg2〉P̂a
∂p̂
′(0)
2

∂t̂
− 1

r̂

∂

∂r̂

[
r̂d̂2〈k̂2〉(P̂a − p̂′(0)

2 )
∂p̂
′(0)
2

∂r̂

]
−
(
δk

δ

)[
k̂f(P̂a − p̂′(0)

f )
∂p̂
′(0)
f

∂ẑ

]
ẑ=F̂2

.

(4.15)

In the outer coarse layer Ω3, the integration is from 0 to d̂3 :

〈θg3〉P̂a
∂p̂
′(0)
3

∂t̂
− 1

r̂

∂

∂r̂

[
r̂〈k̂3〉(P̂a − p̂′(0)

3 )
∂p̂
′(0)
3

∂r̂

]
= 0. (4.16)

In the above equations, the angle brackets denote depth averages; for example,

〈k̂1〉(r̂) =
1

d̂1

∫ F̂1

0

k̂1(r̂, ẑ)dẑ. (4.17)

The boundary terms in (4.14) and (4.15) represent leakage into or from the fine-
grained lens Ωf , for which the leading-order flow equation is finally found from
(4.5):

θgfP̂a
∂p̂
′(0)
f

∂t̂
−
(
δk

δ

)
∂

∂ẑ

[
k̂f(P̂a − p̂′(0)

f )
∂p̂
′(0)
f

∂ẑ

]
= 0. (4.18)

In summary (4.14)–(4.16) govern the unsteady, essentially horizontal flow in the
coarse layers, with leakage from the lens. Equation (4.18) accounts for the essentially
vertical flow through the semipervious lens. Thus in all layers the flow equations are
just one-dimensional; this simplification is of the same genre as the classical hydro-
logical (quasi-three-dimensional) approximation introduced heuristically by Hantush
& Jacob (1955) in the theory of wells in a layered stratum with sharply contrasting
permeabilities. Clearly, even without axial symmetry, the present analysis can be
modified straightforwardly. The approximate flow would be two-dimensional (hori-
zontal) in the coarse layers, and vertical in the lens. The mathematical saving of the
approximation is still considerable.

To solve the above equations, we need the pressure continuity condition (4.9) on
the interface, and the following radial boundary conditions as described in §2.2:

∂p̂
′(0)
1

∂r̂
= 0 at r̂ = 0, (4.19)

∂p̂
′(0)
2

∂r̂
= 0 for 0 < t̂ < T̂ and p̂

′(0)
2 = 1 for t̂ > T̂ at r̂ = r̂0, (4.20)
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p̂
′(0)
1 = p̂

′(0)
2 = p̂

′(0)
3 at r̂ = r̂b, (4.21)

d̂1〈k̂1〉
∂p̂
′(0)
1

∂r̂
+ d̂2〈k̂2〉

∂p̂
′(0)
2

∂r̂
= d̂3〈k̂3〉

∂p̂
′(0)
3

∂r̂
at r̂ = r̂b, (4.22)

p̂
′(0)
3 = 0 at r̂ →∞. (4.23)

Once the pressure is solved in various layers, the leading-order specific discharge
components can be found from Darcy’s law:

〈û(0)
i 〉 = 〈k̂i〉

∂p̂
′(0)
i

∂r̂
(i = 1, 2, 3), (4.24)

ŵ
(0)
f =

(
δk

δ

)
k̂f
∂p̂
′(0)
f

∂ẑ
. (4.25)

If the entire ground surface is unsealed, significant vertical flow will result; the
region within a radius of the order of the layer depth d̃ from the extraction well
will require a fully two-dimensional (r̂, ẑ) analysis. If, on the other hand, the ground
surface is only sealed (paved) within a radius from the well comparable to the lens
radius, the flow in the upper layer below the pavement would still be essentially
horizontal and governed by (4.15), while the pressure deviation p̂

′(0)
2 vanishes outside

the paved zone. Near the edge of the pavement a locally two-dimensional (r̂, ẑ)
refinement is needed.

4.2. Chemical vapour transport

4.2.1. Coarse layers

Normalizing the variables according to the scales in table 1, the transport equation
(2.5) and the interface condition (2.17) become

δθgiP̂a
∂ĉgi

∂t̂
+
δ

r̂

∂

∂r̂
(r̂ûiĉgi) + δ

∂

∂ẑ
(ŵiĉgi)−

δ

Per̂

∂

∂r̂

(
r̂D̂i

∂ĉgi

∂r̂

)
− 1

Pe

∂

∂ẑ

(
D̂i
∂ĉgi

∂ẑ

)
= −δ 6φiθai

H

(
Dwir̃

a2
i ũc

) ∞∑
n=1

∫ t̂

0

e−λ̂ni(t̂−τ̂)
∂ĉgi

∂τ̂
dτ̂ in Ωi(i = 1, 2, 3), (4.26)

−δ
(
ûiĉgi −

D̂i

Pe

∂ĉgi

∂r̂

)
∂F̂i

∂r̂
+

(
δŵiĉgi −

D̂i

Pe

∂ĉgi

∂ẑ

)
= −δ2

(
ûf ĉgf −

δDD̂f

δPe

∂ĉgf

∂r̂

)
∂F̂i

∂r̂

+δ

(
ŵfĉgf −

δDD̂f

δPe

∂ĉgf

∂ẑ

)
on Γi(i = 1, 2), (4.27)

where

λ̂ni = λnir̃/(ũcP̂a) = n2π2Deir̃/(a
2
i ũcP̂a) (n = 1, 2, 3, · · · , i = 1, 2, 3). (4.28)

Recall from (3.12) and (3.6) that Pe > O(1) and δD = O(δ). Since it has been assumed
in (3.16) that the diffusion time in a coarse aggregate is comparable to the advection
time, the source term on the right-hand side of (4.26) must be of order δ. Let us
now substitute the expansions of ĉg , û and ŵ according to (4.1) into (4.26), (4.27) and
(2.14). The first two orders of perturbation equations are as follows.
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O(1):

− 1

Pe

∂

∂ẑ

(
D̂i
∂ĉ

(0)
gi

∂ẑ

)
= 0 in Ωi(i = 1, 2, 3), (4.29)

− D̂i

Pe

∂ĉ
(0)
gi

∂ẑ
= 0 on Γi(i = 1, 2), (4.30)

∂ĉ
(0)
gi

∂ẑ
= 0 (i = 1, 2, 3) on ẑ = 0 and ẑ = d̂3. (4.31)

Clearly the above conditions imply that the leading-order concentrations in the coarse
layers are independent of ẑ. That is,

ĉ
(0)
gi = ĉ

(0)
gi (r̂, t̂) (i = 1, 2, 3). (4.32)

O(δ):

θgiP̂a
∂ĉ

(0)
gi

∂t̂
+

1

r̂

∂

∂r̂
(r̂û(0)

i ĉ
(0)
gi ) +

∂

∂ẑ
(ŵ(0)

i ĉ
(0)
gi )− 1

Per̂

∂

∂r̂

(
r̂D̂i

∂ĉ
(0)
gi

∂r̂

)

− 1

Pe

∂

∂ẑ

(
D̂i
∂ĉ

(1)
gi

∂ẑ

)
= Ai in Ωi(i = 1, 2, 3), (4.33)

−
(
û

(0)
i ĉ

(0)
gi −

D̂i

Pe

∂ĉ
(0)
gi

∂r̂

)
∂F̂i

∂r̂
+

(
ŵ

(0)
i c

(0)
gi −

D̂i

Pe

∂ĉ
(1)
gi

∂ẑ

)

=

(
ŵ

(0)
f ĉ

(0)
gf −

δDD̂f

δPe

∂ĉ
(0)
gf

∂ẑ

)
on Γi(i = 1, 2), (4.34)

ŵ
(0)
i = 0,

∂ĉ
(1)
gi

∂ẑ
= 0 (i = 1, 2, 3) on ẑ = 0 and ẑ = d̂3. (4.35)

The phase exchange term on the right-hand side of (4.33) is

Ai = −6ξiσiP̂a

∞∑
n=1

∫ t̂

0

e−λ̂ni(t̂−τ̂)
∂ĉ

(0)
gi

∂τ̂
dτ̂ (i = 1, 2, 3), (4.36)

where for i = 1, 2, 3,

ξi =
φiDwiθai

HDei
=

[Kdi(1− φi)ρs + φi]θai
H

, (4.37)

σi =
Deir̃

a2
i ũcP̂a

, (4.38)

and

λ̂ni = n2π2σi (n = 1, 2, 3, · · ·). (4.39)

As in the air flow problem, we integrate (4.33) across the three coarse layers, and use
Leibniz’s rule and the boundary conditions (4.35) or the interface condition (4.34) to
get depth-integrated equations. Thus, in the bottom coarse layer Ω1, the integration
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is from 0 to F̂1(r̂):

d̂1〈θg1〉P̂a
∂ĉ

(0)
g1

∂t̂
+

1

r̂

∂

∂r̂
(r̂d̂1〈û(0)

1 〉ĉ
(0)
g1 )− 1

Per̂

∂

∂r̂

(
r̂d̂1〈D̂1〉

∂ĉ
(0)
g1

∂r̂

)

= d̂1〈A1〉 −
[
ŵ

(0)
f ĉ

(0)
gf −

(
δDD̂f

δPe

)
∂ĉ

(0)
gf

∂ẑ

]
ẑ=F̂1

. (4.40)

In the upper coarse layer Ω2, we integrate from F̂2(r̂) to d̂3:

d̂2〈θg2〉P̂a
∂ĉ

(0)
g2

∂t̂
+

1

r̂

∂

∂r̂
(r̂d̂2〈û(0)

2 〉ĉ
(0)
g2 )− 1

Per̂

∂

∂r̂

(
r̂d̂2〈D̂2〉

∂ĉ
(0)
g2

∂r̂

)

= d̂2〈A2〉+

[
ŵ

(0)
f ĉ

(0)
gf −

(
δDD̂f

δPe

)
∂ĉ

(0)
gf

∂ẑ

]
ẑ=F̂2

. (4.41)

In the outer coarse layer Ω3, the integration is from 0 to d̂3:

〈θg3〉P̂a
∂ĉ

(0)
g3

∂t̂
+

1

r̂

∂

∂r̂
(r̂〈û(0)

3 〉ĉ
(0)
g3 )− 1

Per̂

∂

∂r̂

(
r̂〈D̂3〉

∂ĉ
(0)
g3

∂r̂

)
= 〈A3〉. (4.42)

Similar to the flow equations, the transport equations in the three coarse layers (4.40)–
(4.42) are radially one-dimensional. The leakage terms in (4.40) and (4.41) couple the
transport in Ω1 and Ω2 with that in the fine lens Ωf , which will be discussed in §4.2.2.
The radial boundary conditions required to complete the above problem are

∂ĉ
(0)
g1

∂r̂
= 0 at r̂ = 0, (4.43)

ĉ
(0)
g2 = 1 for 0 < t̂ < T̂ and

∂ĉ
(0)
g2

∂r̂
= 0 for t̂ > T̂ at r̂ = r̂0, (4.44)

ĉ
(0)
g1 = ĉ

(0)
g2 = ĉ

(0)
g3 at r̂ = r̂b, (4.45)

d̂1

(
〈û(0)

1 〉ĉ
(0)
g1 −

〈D̂1〉
Pe

∂ĉ
(0)
g1

∂r̂

)
+ d̂2

(
〈û(0)

2 〉ĉ
(0)
g2 −

〈D̂2〉
Pe

∂ĉ
(0)
g2

∂r̂

)

= d̂3

(
〈û(0)

3 〉ĉ
(0)
g3 −

〈D̂3〉
Pe

∂ĉ
(0)
g3

∂r̂

)
at r̂ = r̂b, (4.46)

ĉ
(0)
g3 = 0 at r̂ →∞. (4.47)

Also, similar to the flow, if the ground surface is only paved within a radius from
the well comparable to the lens radius, the transport in the upper layer underneath
the pavement would still be governed by (4.41), while the concentration ĉ(0)

g2 vanishes
outside the paved zone. Near the edge of the pavement a locally two-dimensional
(r̂, ẑ) refinement is needed.

4.2.2. Fine-grained lens

Because of the fine-grained structure of the lens, (2.5) can be greatly simplified. We
assume that in the lens the aggregate diffusion time scale is much shorter than the
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global advection time scale, or

Deft̃/a
2
f = O(δ−1) so that λnft̃ = n2π2Deft̃/a

2
f � 1 (n = 1, 2, · · ·), (4.48)

where af is the radius of an aggregate and Def is the sorption-retarded aggregate
diffusivity given by (2.7), both for the lens. As shown in Appendix A, the right-hand
side of (2.5) can be approximated by the asymptotic expansion (A 2):

RHS(2.5) ∼ −φfDwfθaf
HDef

(
∂cgf

∂t
−

a2
f

15Def

∂2cgf

∂t2
+ · · ·

)
, (4.49)

where Dwf is the aqueous diffusivity in an aggregate in the lens. While the leading
term above can be combined with the unsteady term on the left-hand side of (2.5),
the second term is of the order a2

f/(Deft̃) (= O(δ)� 1) smaller. Using the scales listed

in table 1, we may show that to the leading order O(δ0),

βfP̂a
∂ĉ

(0)
gf

∂t̂
+

∂

∂ẑ
(ŵ(0)

f ĉ
(0)
gf )− δD

δPe

∂

∂ẑ

(
D̂f
∂ĉ

(0)
gf

∂ẑ

)
= 0 (4.50)

where βf is the retardation factor given by

βf = θgf +
φfDwfθaf

HDef
= θgf +

[Kdf(1− φf)ρs + φf]θaf
H

= θgf + ξf. (4.51)

Note that ξf is the lens counterpart of ξi defined in (4.37). Now, owing to local
equilibrium chemical partitioning in aggregates, this term gives rise to retardation of
vapour transport in the lens.

Again similar to the flow, the leading-order transport in the fine lens is vertically
one-dimensional and the concentration ĉ

(0)
gf depends on r̂ only parametrically. The

boundary conditions are

ĉ
(0)
gf = ĉ

(0)
gi onΓi(i = 1, 2). (4.52)

So far the approximate equations are valid for soil layers which can be slightly
inhomogeneous, in that the soil properties within a layer can depend continuously on
space over the scale r̃ horizontally and the scale d̃ vertically.

4.3. Dimensionless parameters

The intensity of well pressure is characterized by the ratio P̂a given by (3.18). It is
larger for a smaller pumping rate, and vice versa. As the pressure deviation in the well
(Pa − p0) can be a finite fraction of the atmospheric pressure (Pa), the dimensionless
parameter P̂a is in general of order unity. The Péclet number Pe measures the
relative importance of advection over diffusion in the radial transport in the coarse
layers where flow is significant. According to its definition in (3.11), Pe is inversely
proportional to P̂a. Several other dimensionless parameters important to the physical
and chemical process are discussed below.

(a) Aggregate parameters σi, ξi (i = 1, 2, 3) and βf
The physical significance of these parameters has been discussed in a previous

study (Ng & Mei 1996b). Briefly σi, defined in (4.38), is the ratio of advection time
to microscopic aggregate diffusion time in a coarse layer, which reflects the depletion
rate of a chemical in aggregates relative to the advective transport. It is the key
parameter to indicate the departure from local equilibrium of phase partitioning. In
the limit of σi � 1, local equilibrium exists between aggregate aqueous concentration
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and vapour concentration in the air pores. On the other hand, if σi � 1, a kinetic
situation prevails, i.e. aggregate concentration responds slowly to changes in vapour
concentration. The parameter ξi, defined in (4.37), is a ratio of chemical mass
partitioned in aggregates to that in vapour phase per bulk volume in a coarse layer
under equilibrium partitioning. A larger ξi corresponds to a greater fraction of the
chemical residing in the coarse aggregates, and therefore implies a higher retardation
of the transport. The corresponding parameter ξf for the lens is a part of the
retardation factor βf = θgf + ξf given by (4.51), as a result of local equilibrium
exchange between vapour and aggregate phases in the fine-grained lens. Similarly,
a larger βf means higher partitioning into the aqueous and the sorbed phases, and
causes a slower transport in the lens.

(b) Soil-layer properties δk/δ and δD/δ
The two ratios δk/δ and δD/δ measure the contrasts in advective and diffusive

transport rates respectively, between the fine-grained lens and the coarse layers. If
these ratios are small, both advection and diffusion across the lens will take place more
slowly than the horizontal transport in the coarse zone. In such a case, the chemical
concentration can change relatively fast in the coarse zone, but only modestly in the
lens. As a consequence a rapid initial clean-up of the vapour phase in the coarse zone
does not guarantee final remediation of the entire soil system, since rebound due to
slow diffusion from the lens may continue long after soil venting is stopped.

5. Numerical examples and discussion
We now apply the first-order approximate equations to study the effects of a low-

permeability lens on soil vapour extraction. In the following numerical examples, we
further assume that the soil within each layer is homogeneous. Therefore the material
properties in each layer are constants and equal to their own scales. As a result, all

normalized conductivities and diffusivities become 1, i.e. k̂i = k̂f = D̂i = D̂f = 1 where
i = 1, 2, 3. It is now more convenient to replace the coarse layer subscript i = 1, 2, 3
by c, i.e. θgi = θgc, σi = σc and ξi = ξc. We also choose the following length scales:

r̃ = rb and d̃ = d3 so that r̂b = d̂3 = 1. For the lens geometry, an ellipsoid is chosen
whose boundaries are given by(

F̂2(r̂)

F̂1(r̂)

)
= 0.5± 0.1(1− r̂2)1/2. (5.1)

The lens is centred at the mid-level of the stratum ẑ = 0.5 and has a maximum
thickness of 0.2 at r̂ = 0. By symmetry about the centreplane of the lens, the
thicknesses of Ω1 and Ω2 are given by the same function:

d̂1 = d̂2 = 0.5− 0.1(1− r̂2)1/2. (5.2)

The initial boundary value problem is solved numerically by the method outlined in
Appendix B. For computational convenience, the inner boundary conditions at r̂ = 0
are applied at r̂ = r̂0 instead. Since a very small r̂0 is chosen, the error is expected to
be insignificant.

Due to the high cost of power the applied well pressure cannot in practice drop
below 50% of the atmospheric pressure (Baehr et al . 1989). Hence we consider
only the range P̂a = 20–2 which is equivalent to p0/Pa = 0.95–0.5. Let us take a

typical sand layer for which k̃cPa/D̃c = 100, which corresponds to a permeability scale
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Figure 2. Contours of vapour concentration cg (flood) as a function of time before pumping for
Case I: δk/δ = 1, δD/δ = 1, σc = 1, βf = 5.

k̃c = O(10−8 m2 (Pa s)−1); the Péclet number is then related to P̂a by

Pe = k̃c(Pa − p0)/D̃c =
(
k̃cPa/D̃c

)
/P̂a = 100/P̂a. (5.3)

Hence the above range of pumping pressure also corresponds to the range Pe = 5–50.
The initial period of contamination is chosen to be 0 < t̂ < T̂ = 100. Pumping

begins at t̂ = 100 and is maintained at a constant rate. To have some idea of the time
in reality, if we take a site with a lens radius r̃= 30 m, the advection velocity scale is
in the range of ũc = 10−6–10−5 m s−1, according to (3.10). The time scale is t̃ = O(10)
days from (3.17). The total time of contamination is roughly three years.

The following input values are chosen for all numerical examples:

r̂0 = 0.05, θgc = 0.5, ξc = 1, θgf = 0.1. (5.4)

As sandy materials tend to have a lower sorption coefficient, a relatively small ξc = 1
is assumed for the coarse layers. On the other hand, clayey materials are usually
richer in organic matter and therefore have a larger sorption coefficient. Two values
of βf = 5 and 50 are considered in the computations. Thus, four sets of values of
δk/δ, δD/δ, σc and βf are chosen for comparison. From now on we shall for simplicity
omit the hats and superscripts in all normalized quantities.

5.1. Effects of pumping rate

In Case I we take δk/δ = 1, δD/δ = 1, σc = 1 and βf = 5. Figure 2 shows how
the chemical vapour spreads in various layers as a function of time before pumping.
Clearly the semipervious lens obstructs much of the vapour from diffusing into the
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Figure 3. Contours of vapour concentration cg (flood) and air pressure p/Pa (dotted lines) as a
function of time during pumping, with Pe = 5, for Case I.

bottom layer. Except very far from the centre, there always exists an appreciable
concentration gradient across the lens, implying a persistent flux from the top coarse
layer to the bottom coarse layer. For example, the maximum vapour concentration
in the bottom layer at large times is only 0.3, while that in the top layer is 1.0. While
the high concentration levels are confined largely within the upper layer and the lens,
the vapour front spreads to a distance more than 2.5 times the lens radius at t = 100.

The spatial and temporal variations of the vapour concentration during pumping
with two pumping rates Pe = 5 and Pe = 50 are shown respectively in figures 3
and 4. Also plotted as dotted lines are the contours of the pressure ratio p/Pa,
from which the flow development can be inferred. In both cases the flow becomes
almost steady when the pumping time is larger than 10 (t = 110). Also, beyond
this pumping time the concentration gradient across the lens is substantially reduced,
resulting in a practically uniform concentration profile across the entire stratum.
This is expected since the diffusion time across the lens is of order unity as shown
in (3.14). Therefore when pumping is long enough, vertical diffusion is completed,
and horizontal advection becomes the major mode of transport in the lens. Clearly,
vapour is depleted more rapidly with a higher pumping rate or a stronger advection
in all the layers. Note that for the lower pumping rate Pe = 5 (figure 3), the
vapour concentration at far distances continues to rise with time, despite pumping.
This is because far from the well advection is too weak to counter the outward
diffusive transport. The situation is reversed only at a very large time when the radial
concentration gradient becomes small enough.

Since advection is controlled by the air flow, we show in figure 5 the three specific
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Figure 4. Contours of vapour concentration cg (flood) and air pressure p/Pa (dotted lines) as a
function of time during pumping, with Pe = 50, for Case I.

discharge components u1, u2 and w̄f as functions of r at t = 110 for the two pumping
rates, where w̄f is the depth-averaged vertical specific discharge in the lens. Note that
the horizontal and the vertical components are normalized differently according to
table 1. Also note that the scale used in the case Pe = 50 is 10 times that in the case
Pe = 5. Taking this into account, it is clear that when the pressure vacuum in the
well increases by 10 times, the velocity components increase at most locations more
than 10 times. If the velocity scale ũc has an order of 10−5 m s−1 as estimated above,
the horizontal velocity at the well is then roughly 0.003 mm s−1 and 0.05 mm s−1 for
Pe = 5 and Pe = 50 respectively. Pumping causes a much higher velocity near the
centre in the top layer than in the bottom layer, but the difference diminishes rapidly
with radial distance. At a normalized radial distance of 0.5 (i.e. half of the lens
radius), both u2 and w̄f have already decreased to less than 10% of their maximum
values at the well. This explains the long time required to carry vapour farther than
this distance, especially in the outer layer, to the pumping well.

It is also of interest to compare (figure 6) the effluent vapour concentration at the
well (cgw), with the maximum vapour concentration in the lens (cgm) and the maximum
aqueous concentration in the coarse layers (cwm). In the field only the effluent vapour
concentration is measured in the well to assess the progress of the clean-up. Clearly
a stronger pumping causes the concentration in each layer to reduce very fast at first,
and then very slowly in the long run. This tailing effect reflects the slow process of
advecting the remote vapour (i.e. that already spread to large radial distances) back
to the pumping well. With a stronger pumping the decay curves of the two maximum
concentrations are further away from that of the effluent vapour concentration.
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Figure 5. Components of specific discharge: u1 in the bottom layer (short dashes), w̄f in the lens
(long dashes) and u2 in the upper layer (solid) as a function of radial distance at t = 110 for Case
I: (a) Pe = 5; (b) Pe = 50, where the specific discharge scale is 10 times that of (a).

5.2. Effects of lens conductivity and diffusivity

We now consider Case II for a much less pervious lens with δk/δ = δD/δ = 0.1; the
aggregate properties σc = 1, and βf = 5 are kept the same. As expected, the lens
offers even more resistance to the diffusion of vapour into the bottom layer during
the contamination stage (figure 7). The concentration gradient across the lens is more
prominent, and the vapour diffuses to the bottom layer through the lens centre and
around the lens tip as well (figure 7c). At t = 100 the maximum vapour concentration
in the lens is only 0.08. The concentration distributions in the outer layer far from
the lens are however close to those at the same instant in Case I. This suggests that
the effect of the lens diffusivity on the spread of vapour to the outer layer decreases
with distance.

We only present the case of large pumping rate (Pe = 50) as shown in figure 8.
Clearly the concentration in the lens is removed more slowly than for Case I. A
lower lens permeability therefore results in a slower response in lens concentration
to pumping. For example, when t = 101, the maximum concentration in the lens
remains as high as 0.8 while that in the top layer has already dropped below 0.2
(figure 8b). However, similar to Case I, the concentration profile across the layers
becomes more uniform at larger pumping times.

The effects of a lower lens permeability on the velocity components are shown in
figure 9. As compared to figure 5, it can be seen that while the horizontal velocity in
the pumping top layer is not much affected, the vertical velocity in the lens and the
horizontal velocity in the bottom layer are dramatically reduced. This explains the
much weaker advection and therefore slower decay of the vapour concentration in
the lens than for Case I.

The time variations of the effluent vapour concentration cgw at the well, the
maximum aqueous concentration in coarse layers cwm and the maximum concentration
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Figure 6. Effluent vapour concentration cgw (solid), maximum vapour concentration in the lens
cgm (short dashes) and maximum aqueous concentration in the coarse layers cwm (long dashes) as a
function of time during pumping for Case I: (a) Pe = 5; (b) Pe = 50.
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Figure 7. Contours of vapour concentration cg (flood) as a function of time before pumping for
Case II: δk/δ = 0.1, δD/δ = 0.1, σc = 1, βf = 5.
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Figure 8. Contours of vapour concentration cg (flood) and air pressure p/Pa (dotted lines) as a
function of time during pumping, with Pe = 50, for Case II.
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Figure 9. Components of specific discharge: u1 in the bottom layer (short dashes), w̄f in the lens
(long dashes) and u2 in the upper layer (solid) as a function of radial distance at t = 110, with
Pe = 50, for Case II.

in the lens cgm for Case II are shown in figure 10. While the decay rates for cgw and cwm
are close to those in Case I, the slower response of cgm to pumping is obvious. There
is a larger difference between the effluent vapour concentration and the maximum
concentrations in the soil, especially during the early stage of pumping.

5.3. Effects of aggregate diffusivity

Keeping δk/δ = δD/δ = 0.1 and βf = 5 as in Case II, we examine in Case III the
effects of a smaller aggregate diffusion rate σc = 0.1 in the coarse layers. Physically
a smaller σc implies further departure from local equilibrium between concentrations
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Figure 10. Effluent vapour concentration cgw (solid), maximum vapour concentration in the lens
cgm (short dashes) and maximum aqueous concentration in the coarse layers cwm (long dashes) as a
function of time during pumping, with Pe = 50, for Case II.
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Figure 11. Effluent vapour concentration cgw (solid), maximum vapour concentration in the lens
cgm (short dashes) and maximum aqueous concentration in the coarse layers cwm (long dashes) as
a function of time during pumping, with Pe = 50, for Case III: δk/δ = 0.1, δD/δ = 0.1, σc = 0.1,
βf = 5.

of vapour phase and aqueous phase. However the spread of vapour, during both
contamination and pumping stages, is not appreciably different from Case II. This can
be illustrated by figure 11 which shows the time changes of cgw , cgm and cwm in Case
III. As compared to figure 10, the difference is evident only at the start of pumping
when the maximum aqueous concentration now drops more slowly and the effluent
vapour concentration drops more abruptly. The difference however diminishes with
time when all the concentrations eventually come to the state of tailing. The result is
reasonable since the diffusive flux in an aggregate is significant only in a time scale
of order unity. Thus the effect of the aggregate diffusion rate is only important in
the early stage of pumping. In the long run local phase equilibrium prevails in both
coarse and fine soils.

5.4. Effects of lens retardation factor

We now consider in Case IV the effects of the chemical properties in the lens, with
the same δk/δ = δD/δ = 0.1 and σc = 0.1 as Case III, but a larger βf = 50, which is
increased by a factor of 10. Recall from (4.51) that the retardation factor βf increases
with the sorption partition coefficient which in turn depends on properties of the
soil and the chemical. For a higher retardation factor both the advection and the
diffusion in the lens are expected to be further slowed down. Figure 12 shows the
vapour diffusion before pumping. Now the transport across the lens is so slow that the
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Figure 12. Contours of vapour concentration cg (flood) as a function of time before pumping for
Case IV: δk/δ = 0.1, δD/δ = 0.1, σc = 0.1, βf = 50.

chemical vapour has to spread outward across the entire radius above the lens before
diffusing inward into the bottom layer (figure 12c). The maximum concentration in
the bottom layer is now located near the tip of the lens and is less than 0.02 at
t = 100.

Figure 13 shows how the vapour concentration changes in response to the large
pumping rate (Pe = 50). Since the travel time is inversely proportional to the
retardation factor, the effective transport rate in the lens will be 10 times slower in
this case than Case II. The further sluggishness in the attenuation of concentration
in the lens is evident as compared to figure 8. During the early period of pumping
the maximum vapour concentration in the lens is almost constant in time (figure 14).
This case exhibits the largest discrepancy between the decays of the effluent vapour
concentration and the maximum concentration in the lens.

5.5. Purge time

To find out how the speed of clean-up depends on the above effects and the pumping
pressure, we define the purge time as the time required to reduce the maximum
vapour concentration in the lens to 0.01. The results are plotted in figure 15.

For the same Péclet number or pumping intensity, the purge time is obviously
longer for a lens of lower permeability (Case II), and longer still for a lens of
higher retardation factor (Case IV). A smaller aggregate diffusion rate in the coarse
layer (Case III) however has little effect on the purge time. Thus the clean-up rate
is basically controlled by the permeability, diffusivity and retardation factor of the
lens.



Effects of a semipervious lens on soil vapour extraction 409

0.001 0.005 0.01 0.05 0.1 0.3 0.5 0.7 0.9
Level:
Concentration:

r

(a) t = 100.1 (b) t = 150 (c) t = 110

(d) t = 125 (e) t = 150 (f) t = 200

z

1.0

0.8

0.6

0.4

0.2

0

z

1.0

0.8

0.6

0.4

0.2

0

0.5 1.0 1.5 2.0 2.5 0

0.5 1.0 1.5 2.0 2.5 0 0.5 1.0 1.5 2.0 2.5 0

0.5 1.0 1.5 2.0 2.5 0

0.5 1.0 1.5 2.0 2.5

0.5 1.0 1.5 2.0 2.5

r r

0.
7

0.
8

0.
9

0.
7

0.
8

0.
9

0.
7

0.
8

0.
9

0.
7

0.
8

0.
9

0.
6

0.
7

0.
8

0.
9

0.
6

0.
7

0.
8

0.
9

0.
6

Figure 13. Contours of vapour concentration cg (flood) and air pressure p/Pa (dotted lines) as a
function of time during pumping, with Pe = 50, for Case IV.
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Figure 14. Effluent vapour concentration cgw (solid), maximum vapour concentration in the lens
cgm (short dashes) and maximum aqueous concentration in the coarse layers cwm (long dashes) as a
function of time during pumping, with Pe = 50, for Case IV.

Of course the purge time also decreases with increasing vacuum pressure in the
well. The reduction is more than 50% as Péclet number increases from 5 to 20.
The shortening in purge time however becomes progressively more insignificant when
Péclet number increases above 30. Since the cost of pumping depends on both
the time and the strength of pumping, it is desirable to clean up the soil in the
shortest possible time without an unnecessarily high pumping rate. This is a matter
of optimization involving economical factors.
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Figure 15. Purge time as a function of Pe for Cases I, II, III and IV.

6. Concluding remarks
In this paper we have derived the approximate equations for soil chemical vapour

extraction in an unsaturated zone containing a thin lens of low permeability. The
key assumptions are (i) the layer thickness is much smaller than the characteristic
horizontal length scale; and (ii) there is a sharp contrast between conductivities and
diffusivities of the semipervious lens and the coarse layers. The small parameters
enable us to perform a perturbation analysis which reduces the dimensions of the
governing equations for the air flow and the vapour transport in various layers.
Specifically the flow and transport are basically horizontal along the coarse layers
and vertical across the lens. While the flow depends on the pressure drop in the well
and the permeability ratio, the transport of chemical depends on the Péclet number,
the aggregate parameters and the diffusivity ratio. For very permeable soil and strong
pumping, advection dominates the transport mechanism.

Results of some numerical computations clarify the significance of the pumping
strength and the soil properties. In particular the lens properties (air conductivity
and chemical retardation factor) are critical in regulating the rate of vapour removal.
Transport across the lens is the slowest in the case of a large retardation factor,
low permeability and weak pumping. The aggregate diffusivity in the coarse layer
also affects the phase-change kinetics in the early stage of pumping, and becomes
less influential in the long run. In all cases the effluent vapour concentration drops
more abruptly than the peak concentration in the lens immediately after the start of
pumping, but they all exhibit tailing in the long run as the more remote vapour is
being extracted.

While a single axisymmetrical lens is treated here, it is straightforward to extend our
approximation to more realistic situations where there are several wells and multiple
semipervious lenses of general planform. The problem in the coarse layers will
be horizontally two-dimensional. Numerical computation will be more demanding
but still far less cumbersome than the task of solving a fully three-dimensional
problem in all layers. Future development should include the effects of an underlying
saturated zone where phase exchange between vapour and the dissolved phase in
the groundwater has to be taken into account. Still more challenging is the problem
of thermal air-sparging where hot air is injected into the saturated zone to enhance
volatilization of the dissolved phase.
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Appendix A. Asymptotic expansion of the integral source term
In this Appendix we work out the asymptotic expansion of the integral on the

right-hand side of (2.5) when the following condition is true:

λ̂n = λnt̃ = n2π2Det̃/a
2 � 1 (n = 1, 2, · · ·). (A 1)

By Laplace’s method, we first approximate the integral by restricting the integration
to a narrow region surrounding the maximum of the exponent, τ̂ = t̂, about which
∂cg/∂τ can be replaced by its Taylor series. Then the integrals in the series are
evaluated after extending the lower integration limit to −∞:

∞∑
n=1

∫ t

0

e−λn(t−τ)
∂cg

∂τ
dτ

=

∞∑
n=1

∫ t̂

0
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e
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∂t2
+ · · · as λ̂n � 1. (A 2)

Appendix B. Numerical method of solution
As noted earlier the flow and the transport problems are mathematically similar,

namely the equations are radial in the spatial dimension for the coarse layers, but
vertical for the lens. Solutions in the inner coarse layers are coupled to those in
the outer coarse layer and in the lens through the continuity conditions on the
interfaces. As suggested by these features, we adopt an alternate-direction-iterative
finite-difference scheme for both problems. An iterative scheme is required also
because the flow equations are nonlinear. Omitting the standard details, we outline
the solution scheme as follows.

To give better numerical resolution near the well, we change the radial coordinate
by

y = ln(r̂/r̂0) (B 1)



412 C.-O. Ng and C. C. Mei

so that

r̂
∂

∂r̂
→ ∂

∂y
and

1

r̂

∂

∂r̂

(
r̂
∂

∂r̂

)
→ 1

r̂2

∂2

∂y2
. (B 2)

The coarse layers are linear segments:

Ω1, Ω2 : 0 = y1 < y < yb discretized into Ib − 1 equal intervals,
Ω3 : yb < y < ym discretized into Im − 1 equal intervals,

}
(B 3)

where y = ym corresponds to a large radial distance at which the far-field boundary
conditions are applicable within the time of the problem. On the other hand, the lens
is a two-dimensional domain:

Ωf : 0 = y1 < y < yb, F̂1(y) < ẑ < F̂2(y), (B 4)

which is divided into Ib columns each of which is discretized into Jm equal intervals.
The bottom and the top end points of each column in Ωf coincide respectively with
the points in Ω1 and Ω2 with the same radial distance. The outer boundary points in
Ω1 and Ω2 also coincide with the inner boundary point in Ω3.

Let the pressure or concentration be known everywhere at m∆t̂. Advancing the
solutions to (m + 1)∆t̂ is carried out by the following steps. All individual one-
dimensional equations are solved with a standard second-order implicit scheme of
forward time, centred-space differences. The integral source terms are calculated with
an approximate method described in a previous study (Ng & Mei 1996b).

Step 1. Using the most recent quantities in Ωf for the interface terms, we first
advance solutions by iterations in the three coarse layers satisfying the radial boundary
and matching conditions. In each iteration the solutions in Ω1 and Ω2 are first obtained
with the boundary value at r̂ = r̂b given by that of the last iterate in Ω3. The solution
in Ω3 is then found with the flux at r̂b computed from the new iterates in Ω1 and
Ω2. The iterations continue until satisfactory convergence is achieved. For the present
study the iteration will stop when the relative difference between two consecutive
iterates is less than 10−4 for all variables.

Step 2. With the newly obtained solutions in Ω1 and Ω2 as the boundary values,
we advance solutions in each column (except the one at the lens tip r̂ = r̂b) in the
lens.

Step 3. Repeat Steps 1 and 2 successively until satisfactory convergence of all
solutions is achieved. The convergence criterion is the same as in Step 1.

By now the solution procedure is complete up to (m + 1)th time step. The above
procedure is repeated for the next time step. The above scheme is applied to both
the flow and the transport problems. Nonlinearity in the flow equation is treated by
updating the pressure variable in the coefficients at each time of iteration.
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